DOM Jungle |
Can We Trust The UI?

Gal Weilzman

Client side security (web)

e Many types of attacks

o Dom Clobbering
XSLeaks
CSP Bypass
Prototype Pollution
CSS Injection

XSS _
Supply Chain attacks [~ Code Execution

More... l

Breach of Origin - Implications

BlueHat IL

O OO0 O O O0Oo

Evolution of XSS (the problem)

e Usability
o Userinput example.com
O <spanid="name”> Jack

e Usability x Security Our code

O (code execution)
® Introduction of XSS
O <spanid="name”>

Jack

® An “outside” attack
o We trust our app’s code - we don’t trust user ‘
® XSS

o0 = Code that should not execute in our origin
® Web security had to catch up

BlueHat IL

Evolution of XSS (the solution)

® The Web fixes XSS!

e Sanitization example.com
o DOMPurify, Trusted Types, etc
o +CSP Our code

O script-src, strict-dynamic
O unsafe-eval, unsafe-inline
e =No XSS

® Web security caught up
o Web builders didn’t ‘

o Their problem "\ (%) _/~

BlueHat IL

2023’s landings

176 services are newly enforcing Trusted Types

are newly enforcing Resource Isolation Policy

conforma

& new static guarantees that all transit

nents » removed

ng Samesite cookies

napkin math comes up with

2 that these 6 ro

Id have taken Goog ngineering

490 &
20 eng

2 in the tradit

aving the security team take on these rollouts ¢ ve were able to land a

with a tiny fraction of that effort. This increases velocity for both the secu

and for progduct teams (enabling p

what we

15 the full safe coding approach, where we uplift security at scale, for everyone

mpact of this, we can al

overage, \

most sensitive se

b OF OUr mc

sensitive s¢

Type

ly enable these and ¢

apps bulit on top of our secure frameworks

ymprehens / me

et
BCUNty

side HTML te een zero XSS vulnerabilities sir

e features w

youre interested in a more d¢

.

debug log leakage with Safe Coding. This highlights many of the cor grent to dol
of a massively sC ch out for future blog posts in this senes where

we'll talk more about these rol

BlueHat IL

https://bughunters.google.com/blog/5896512897417216/a-recipe-for-scaling-security

Evolution of XSS (the solution)

® The Web fixes XSS!

e Sanitization example.com
o DOMPurify, Trusted Types, etc
o +CSP Our code

O script-src, strict-dynamic
O unsafe-eval, unsafe-inline
e =No XSS

® Web security caught up
o Web builders didn’t ‘

o Their problem "\ (%) _/~

Input

BlueHat IL

Evolution of Supply Chain Attacks

e A whole different story...
e Composability

BlueHat IL

Composability (software)

e Composability
o Software composability
m “the ability for software components to be easily combined
and integrated to create new applications or systems.”

— (by ChatGPT)
O Important principle Software
m Development of software
m Creation of services Software

Software

BlueHat IL

Composability (past)

e Web
O A composability friendly ecosystem! example_com
® Past =
o Runtime Our code bad.com

m <script/> or<iframe/>
O Ontheclient side - in the browser!

|

Input

BlueHat IL

Composability (security)

e Composability x Security

® The Same Origin Policy example.com
O Isolate origins from one another —
O bad.com can’t access example.com Our code bad.com

O example.com can’t access bad.com

® \What does “access” mean?

|

Input

BlueHat IL

Composability (the same origin policy)
<html>
<head> <html>
<title> EXAMPLE.COM </title> <head>
<script src="/code.js”></script> <title> </[title>
</head> <script src="/code.js”></script>
<body> </head>
<h1> Welcome Guest </h1> '\ < <body>
<iframe src="https:// ”><[iframe> <h1> Welcome Guest </h1>
</body> </body>
</html> </html>

BlueHat IL

Composability (the same origin policy)

EXAMPLE.COM_ 4. ., BAD.COM

A

BlueHat IL

Composability (present)

e Web
O A composability friendly ecosystem! example_com
® Past]
o Runtime Our code bad.com

m </script> or </iframe>

® Present
O Build time
m JavaScript composability
m Dramatically improved
m NPM ecosystem ‘

Complex Supply Chain

e Dependencies/ packages
m JavaScript - language of the Web
e =\Web composability improved! Input

BlueHat IL

Evolution of Supply Chain Attacks (the problem)

e Composability x Security

1. Supply Chain Attacks differ from XSS attacks dramatically
a. An “inside” attack (constructed mostly at build- example.com
time))
b. We can’t trust our app anymore Our code bad.com

c. Supply Chain Attack
i. = Code that should(?) execute in our origin

Complex Supply Chain

1. Mostcode under our origin is maintained by someone else GOOd COder)

1. The Web isn’t ready for this
a. Increase in resolution I

b SOP-Orisi ..
c. Depvsdep /scriptvs script

i. within one origin

Input

BlueHat IL

Evolution of Supply Chain Attacks (the implications)

® The Same Origin Policy

O Isolate origins from one another example.com
O bad.com can’t access example.com —
O example.com can’t access bad.com Our code bad.com

e BUT, this also means:

O DON'T Isolate entities within a single origin -
Complex ly Chain
O bad.com can access bad.com omple Supp y a

O example.com can access example.com Good code?
No isolation Complex _ ‘
within an origin T Supply Chain |~ Input

BlueHat IL

Evolution of Supply Chain Attacks (the implications)
Sources MNetwork Performance Memory Application
e Storage C (Hne
e FEasiest to demonstrate: IEER AR S T
o) V|S|t Origin https:/jweb.telegram.org
O Login Kavik
o Copy your localStorage rgrrepe
0 Openanincognitotab ”:_‘-'_f—‘:”‘“
O Paste your localStorage there d
O Refresh - you should be logged in :ZZ'ZE::':E
e If you can do it manually - JavaScript can too! ded_server_salt
del_server_salt

tgme_sync
dec2_server_salt
kz_version
auth_key_fingerprint
del_auth_key
state_id
des_auth_key

BlueHat IL

https://web.telegram.org/

DOM JUNGLE!

e DOM 7T ¥ &

®)
®)

Well isolated from cross origin DOMs
One hell of a JUNGLE within a single origin!

e |tall comes down to encapsulation

o

Encapsulation is a way to restrict the direct
access to some components of an object

® JavaScript is very friendly to encapsulation

o

It has Scopes!

BlueHat IL

JavaScript Scopes!

» function createSecretLogger(secret) {

® Scope variables return function logSecret() {
o Easily console.log('This is the secet: ', secret);
o Safely } }
const logger = createSecretLogger('SCOPED_SECRET');
(.
> logger

¢ f logSecret() {
console.log('This is the secet: ', secret);
}

> logger();
This is the secet: SCOPED_SECRET

BlueHat IL

DOM JUNGLE!

e DOM is terrible for safe encapsulation
® Jump between any DOM nodes

O Aslong as they are attached!
® Including across iframes

O Aslong as they share an origin!

BlueHat IL

DOM JUNGLE!

EXAMPLE.COM

. N v."-,.?’. £
g J!),

SRV o

B

BlueHat IL

DOM JUNGLE!

Insert Email:

| secret_address@x.com|

R o Elements Console Sources Network Performance Memory Application

<html>
» <head> = </head>
¥ <body>
v <div data-dashlane-rid="71cfa75ed3974a28" data-form-type="other">

<p>Insert Email:</p>
<input id="email" data-dashlane-rid="f85cab285d57bb38" data-form-type="email"> == $¢

htm! body div inputf#email

: Console Search What's new Issues Network conditions

[E]@ top ¥ | © |sec

> // attacker:

field = document. getEle'nentById(email');

f1e1d addEventListener('blur', () = {
f stolenEmail = field.value;
console.log(I stole your email:', stolenEmail);

¥);

I stole your email: secret_address@x.com

BlueHat IL

Evolution of Supply Chain Attacks (the implications)

BlueHat IL

Real life example

. ¥
o Self custodial crypto wallet
O Private key stored locally
o0 Compromised private key == Compromised assets
O Obsessed with client side security!
o #1 corcern - composability security risks
L4 aik
O The LavaMoat JavaScript security toolbox
| , , , , more
o) Enforie isolation between entities living within one single origin
® ik

O Subtree encapsulation within one single DOM
m Against “read” attacks

BlueHat IL

https://github.com/metaMask/
https://github.com/LavaMoat
https://github.com/LavaMoat/LavaMoat
https://github.com/Snow
https://github.com/LavaMoat/LavaMoat/pull/360
https://github.com/LavaMoat/LavaDome
https://github.com/lavamoat/lavadome

BlueHat IL

Key Takeaways

e These days, Web apps are mostly code maintained by others
O Great interms of composability
o Terrible in terms of security
e The Web does not take this gap into account
o Focuses on isolation of origins
o Not on isolation of entities under a single origin
® This puts all assets of an origin under risk
o Storage, Network, DOM (and more)
e What if we had some policy like SOP for DOM subtrees?
o0 We could defend against attackers living within our origin from:
m Accessing sensitive info (read)
m Performing phishing attacks (write)
But also - we could unlock new levels of composability for the Web!

What new technologies could we invent if we could create safely encapsulated DOM
components?

BlueHat IL

Thank You!

A

DOM Jungle |
Can We Trust The UI?

https://weizmangal.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

