
DOM Jungle

Can We Trust The UI?

Gal Weizman

Client side security (Web)

● Many types of attacks
○ Dom Clobbering
○ XSLeaks
○ CSP Bypass
○ Prototype Pollution
○ CSS Injection
○ XSS
○ Supply Chain attacks
○ More…

Code Execution

Breach of Origin - Implications

Evolution of XSS (the problem)

● Usability
○ User input
○ Jack

● Usability x Security
○ (code execution)

● Introduction of XSS
○

Jack <script> alert(“XSS”) </script>

● An “outside” attack
○ We trust our app’s code - we don’t trust user input

● XSS
○ = Code that should not execute in our origin

● Web security had to catch up

example.com

Our code

Input

Evolution of XSS (the solution)

● The Web fixes XSS!
● Sanitization

○ DOMPurify, Trusted Types, etc
● + CSP

○ script-src, strict-dynamic
○ unsafe-eval, unsafe-inline

● = No XSS

● Web security caught up
○ Web builders didn’t
○ Their problem ¯_(ツ)_/¯

example.com

Our code

Input

https://bughunters.google.com/blog/5896512897417216/a-recipe-for-scaling-security

Evolution of XSS (the solution)

● The Web fixes XSS!
● Sanitization

○ DOMPurify, Trusted Types, etc
● + CSP

○ script-src, strict-dynamic
○ unsafe-eval, unsafe-inline

● = No XSS

● Web security caught up
○ Web builders didn’t
○ Their problem ¯_(ツ)_/¯

example.com

Our code

InputInput

Evolution of Supply Chain Attacks

● A whole different story…
● Composability

Composability (software)

● Composability
○ Software composability

■ “the ability for software components to be easily combined
and integrated to create new applications or systems.”
 – (by ChatGPT)

○ Important principle
■ Development of software
■ Creation of services

Composability (past)

● Web
○ A composability friendly ecosystem!

● Past
○ Runtime

■ <script/> or <iframe/>
○ On the client side - in the browser!

example.com

Our code

Input

bad.com

Composability (security)

● Composability x Security
● The Same Origin Policy

○ Isolate origins from one another
○ bad.com can’t access example.com
○ example.com can’t access bad.com

example.com

Our code

Input

bad.com

● What does “access” mean?

Composability (the same origin policy)

<html>
 <head>
 <title> EXAMPLE.COM </title>
 <script src=”/code.js”></script>
 </head>
 <body>
 <h1> Welcome Guest </h1>
 <iframe src=”https://BAD.COM”></iframe>
 </body>
</html>

<html>
 <head>
 <title> BAD.COM </title>
 <script src=”/code.js”></script>
 </head>
 <body>
 <h1> Welcome Guest </h1>
 </body>
</html>

Composability (the same origin policy)

EXAMPLE.COM BAD.COM

● Web
○ A composability friendly ecosystem!

● Past
○ Runtime

■ </script> or </iframe>

example.com

Our code

Input

bad.com

Composability (present)

● Present
○ Build time

■ JavaScript composability
■ Dramatically improved
■ NPM ecosystem

● Dependencies / packages
■ JavaScript - language of the Web

● = Web composability improved!

Complex Supply Chain

● Composability x Security

1. Supply Chain Attacks differ from XSS attacks dramatically
a. An “inside” attack (constructed mostly at build-

time)
b. We can’t trust our app anymore
c. Supply Chain Attack

i. = Code that should(?) execute in our origin

1. Most code under our origin is maintained by someone else

1. The Web isn’t ready for this
a. Increase in resolution

b. SOP: Origin vs origin
c. Dep vs dep / script vs script

i. within one origin

example.com

Our code

Input

bad.com

Evolution of Supply Chain Attacks (the problem)

Complex Supply Chain

Good code? Bad Code?

● The Same Origin Policy
○ Isolate origins from one another
○ bad.com can’t access example.com
○ example.com can’t access bad.com

example.com

Our code

Input

bad.com

Evolution of Supply Chain Attacks (the implications)

Complex Supply Chain

Good code? Bad Code?

● BUT, this also means:
○ DON’T Isolate entities within a single origin
○ bad.com can access bad.com
○ example.com can access example.com

No isolation

within an origin

Complex

Supply Chain+ =

● Storage
● Easiest to demonstrate:

○ Visit https://web.telegram.org/
○ Log in
○ Copy your localStorage
○ Open an incognito tab
○ Paste your localStorage there
○ Refresh - you should be logged in

● If you can do it manually - JavaScript can too!

Evolution of Supply Chain Attacks (the implications)

https://web.telegram.org/

● DOM
○ Well isolated from cross origin DOMs
○ One hell of a JUNGLE within a single origin!

● It all comes down to encapsulation
○ Encapsulation is a way to restrict the direct

access to some components of an object
● JavaScript is very friendly to encapsulation

○ It has Scopes!

DOM JUNGLE!

● Scope variables
○ Easily
○ Safely

JavaScript Scopes!

● DOM is terrible for safe encapsulation
● Jump between any DOM nodes

○ As long as they are attached!
● Including across iframes

○ As long as they share an origin!

DOM JUNGLE!

DOM JUNGLE!

EXAMPLE.COM BAD.COMEXAMPLE.COM

● Why does encapsulation matter for the DOM?
● Without it, attackers can:

○ Read from it
■ Wait for user to insert info
■ Steal it from the DOM

DOM JUNGLE!

● Why does encapsulation matter for the DOM?
● Without it, attackers can:

○ Read from it
■ Wait for user to insert info
■ Steal it from the DOM

Evolution of Supply Chain Attacks (the implications)

○ Write to it
■ Phish the user
■ Convince them to interact with what

you draw to the DOM
○ Happened in real life!

Real life example

● MetaMask
○ Self custodial crypto wallet

○ Private key stored locally
○ Compromised private key == Compromised assets
○ Obsessed with client side security!

○ #1 concern - composability security risks
● LavaMoat

○ The LavaMoat JavaScript security toolbox

■ LavaMoat, Snow, scuttling, LavaDome, more
○ Enforce isolation between entities living within one single origin

● LavaDome

○ Subtree encapsulation within one single DOM
■ Against “read” attacks

https://github.com/metaMask/
https://github.com/LavaMoat
https://github.com/LavaMoat/LavaMoat
https://github.com/Snow
https://github.com/LavaMoat/LavaMoat/pull/360
https://github.com/LavaMoat/LavaDome
https://github.com/lavamoat/lavadome

Key Takeaways

● These days, Web apps are mostly code maintained by others
○ Great in terms of composability

○ Terrible in terms of security
● The Web does not take this gap into account

○ Focuses on isolation of origins

○ Not on isolation of entities under a single origin
● This puts all assets of an origin under risk

○ Storage, Network, DOM (and more)

● What if we had some policy like SOP for DOM subtrees?
○ We could defend against attackers living within our origin from:

■ Accessing sensitive info (read)

■ Performing phishing attacks (write)
● But also - we could unlock new levels of composability for the Web!

What new technologies could we invent if we could create safely encapsulated DOM
components?

DOM Jungle

Can We Trust The UI?

Gal Weizman

Thank You!

https://weizmangal.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

