
Smoke and Mirrors:
Driver Signatures are Optional

Gabriel Landau
Elastic Security

whoami
Low-level Windows [reverse] engineer

Help build Elastic Endpoint Security

Detecting malware tradecraft

Attack & defense of EDR

Presented research at:
Shmoocon
Black Hat USA
Black Hat Asia

Blue, formerly red

Pic

Chapter 1 - Windows File Sharing
More than you’ve ever wanted to know about sharing violations.

Opening Files - Access Rights
CreateFile - Win32 API to open or create files.
● ntdll analog is NtCreateFile.
● Kernel driver analog is ZwCreateFile.

Specify desired access rights:
● FILE_READ_DATA
● FILE_WRITE_DATA
● DELETE
● …

Pic

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://learn.microsoft.com/en-us/windows/win32/fileio/file-security-and-access-rights

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://learn.microsoft.com/en-us/windows/win32/fileio/file-security-and-access-rights

Opening Files - Share Mode
FILE_SHARE_READ / FILE_SHARE_WRITE / FILE_SHARE_DELETE

“I’m okay with others reading/writing/deleting this file while I’m using it.”

As file is opened:
● DesiredAccess is tested against ShareMode of all existing file handles
● ShareMode is tested against GrantedAccess of all existing file handles

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://learn.microsoft.com/en-us/windows/win32/fileio/creating-and-opening-files

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://learn.microsoft.com/en-us/windows/win32/fileio/creating-and-opening-files

Opening Files - Sharing Violation
DesiredAccess/ShareMode incompatibilities fail the CreateFile call.

● ERROR_SHARING_VIOLATION / STATUS_SHARING_VIOLATION

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://learn.microsoft.com/en-us/windows/win32/fileio/creating-and-opening-files

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://learn.microsoft.com/en-us/windows/win32/fileio/creating-and-opening-files

Opening Files - Exclusive Access
Set ShareMode=0 for exclusive access to files until you close the handle.

https://learn.microsoft.com/en-us/windows/win32/fileio/creating-and-opening-files

https://learn.microsoft.com/en-us/windows/win32/fileio/creating-and-opening-files

Filesystems call IoCheckLinkShareAccess to see whether DesiredAccess/ShareMode is
compatible with existing handles.

NTSTATUS NtfsCheckShareAccess(FileObject, DesiredAccess, ShareAccess)
{

ntStatus = IoCheckLinkShareAccess(
FileObject, DesiredAccess, ShareAccess);

if (!NT_SUCCESS(ntStatus))
{

return ntStatus;
}
...

}

Sharing Enforcement - I/O Manager

https://github.com/Microsoft/Windows-driver-samples/blob/622212c3fff587f23f6490a9da939fb85968f651/filesys/fastfat/create.c#L6822-L6884

https://github.com/Microsoft/Windows-driver-samples/blob/622212c3fff587f23f6490a9da939fb85968f651/filesys/fastfat/create.c#L6822-L6884

Sharing Enforcement - File Mapping
File mappings (section objects) allow files to be readable/writable after handles
are closed.

https://github.com/Microsoft/Windows-driver-samples/blob/622212c3fff587f23f6490a9da939fb85968f651/filesys/fastfat/create.c#L6858-L6870

ZwOpenFile File Handle

ZwCreateSection Section Handle

ZwMapViewOfSection Memory Mapped View

NTSTATUS NtfsOpenAttributeCheck(...)
{
 if (!FlagOn(ShareMode, FILE_SHARE_WRITE) &&
 MmDoesFileHaveUserWritableReferences(FileObject->SectionObjectPointer))
 {
 return STATUS_SHARING_VIOLATION;
 }
 ...
}

https://github.com/Microsoft/Windows-driver-samples/blob/622212c3fff587f23f6490a9da939fb85968f651/filesys/fastfat/create.c#L6858-L6870

Sharing Enforcement - Executables
Files mapped as executable images (EXEs/DLLs/etc) must be immutable while in use.

In other words, ZwMapViewOfSection(SEC_IMAGE) implies no-write-sharing.

NTSTATUS NtfsOpenAttributeCheck(...)
{
 // Block writes to active image section objects
 if (FlagOn(DesiredAccess, FILE_WRITE_DATA) &&
 FileObject->SectionObjectPointer.ImageSectionObject &&
 !MmFlushImageSection(FileObject->SectionObjectPointer), MmFlushForWrite)
 {
 return STATUS_SHARING_VIOLATION
 }
 }
 ...
}

https://github.com/Microsoft/Windows-driver-samples/blob/622212c3fff587f23f6490a9da939fb85968f651/filesys/fastfat/create.c#L3572-L3593

https://github.com/Microsoft/Windows-driver-samples/blob/622212c3fff587f23f6490a9da939fb85968f651/filesys/fastfat/create.c#L3572-L3593

Chapter 2 - Code Integrity
How do you trust the code that’s running on your system?

Authenticode
Microsoft specification to digitally sign Portable Executable (PE) files.

PicPic

Authentihash algorithm computes hash over most
(but not all) of the PE file.

Authentihash is signed using PKCS #7 and appended
to PE as Security Directory (aka Certificate
Table).

Authenticode Signing

Pic

https://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/authentico
de_pe.docx

https://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/authenticode_pe.docx
https://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/authenticode_pe.docx

User and kernel implementations to validate signatures.

The user implementation is out of scope for this talk.

The kernel implementation is the Code Integrity (CI) subsystem.

CI.dll protected from tampering by Secure Boot and Trusted Boot systems.

Authenticode Implementations

Kernel Mode Code Integrity (KMCI)
● Validates signatures on drivers before allowing them to load.
● Enforces Driver Signing Enforcement and Vulnerable Driver Blocklist.

User Mode Code Integrity (UMCI)
● CI validates the signatures of EXEs and DLLs before allowing them to load.
● Enforces Protected Processes and Protected Process Light signature requirements.
● Enforces Microsoft Signer process mitigation (SetProcessMitigationPolicy).
● Enforces /INTEGRITYCHECK for FIPS 140-2 modules.
● Exposed to consumers as Smart App Control.
● Exposed to businesses as App Control for Business (formerly WDAC).

KMCI and UMCI implement different policies for different scenarios.

Code Integrity

https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/select-types-of-rules-to-cr
eate
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setprocessmitigationpolicy
https://x.com/GabrielLandau/status/1668353640833114131
https://learn.microsoft.com/en-us/windows/apps/develop/smart-app-control/overview
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/wdac
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/microsoft-recommended-drive
r-block-rules

https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/select-types-of-rules-to-create
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/select-types-of-rules-to-create
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setprocessmitigationpolicy
https://x.com/GabrielLandau/status/1668353640833114131
https://learn.microsoft.com/en-us/windows/apps/develop/smart-app-control/overview
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/wdac
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/microsoft-recommended-driver-block-rules
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/microsoft-recommended-driver-block-rules

Chapter 3 - Incorrect Assumptions
Let’s discuss a class of vulnerabilities resulting from incorrect assumptions.

Incorrect Assumptions
Microsoft docs imply that files successfully opened without write sharing can’t be
modified under you.

What if the filesystem doesn’t know that the file’s been modified?

Executable Image Section Paging
Executable image sections originate from PE files.

MM can page these out if memory is needed:
● Never modified? Discard it. We already have a copy in the original PE.
● Modified? Save it to the pagefile.

○ Example: ntdll was detoured. MM copy-on-write created private copy.

Upon page fault:
● Never modified*? Read the page from the original PE file.
● Modified? Grab the private copy from the pagefile.

* Exception: The memory manager may treat PE-relocated pages as unmodified, dynamically reapplying relocations during page faults.

Page Hashes
Optional list of hashes of each 4KB page of PE. Allows MM to validate hashes of
individual pages during page faults.

Static page hashes
● Stored within signature when file is signed.
● signtool.exe /ph

Dynamic page hashes
● Computed on the fly by CI when SEC_IMAGE is created and validated.
● Enables page hash enforcement even if signature does not include them.

Page hashes are not free - they use CPU and slow down page faults.

https://learn.microsoft.com/en-us/windows/win32/seccrypto/signtool

https://learn.microsoft.com/en-us/windows/win32/seccrypto/signtool

Attacking Code Integrity
Scenario:
1. Orphanage administrator enables macros in email attachment containing ransomware.
2. Ransomware employs UAC bypass to instantly elevate to Admin.
3. Ransomware fails to terminate AV running as Protected Process Light (PPL).
4. Ransomware author wants PPL rights so it can kill AV and ransom orphanage.

Can it launch itself directly as PPL?
 ❌ UMCI prevents improperly-signed EXEs and DLLs from loading into PPL.

CreateFile(FILE_WRITE_DATA) to inject code into already-in-use DLL?
 ❌ NTFS checks prevent CreateFile(FILE_WRITE_DATA) to in-use image sections.

○ Aforementioned MmFlushImageSection check.

FILE_WRITE_DATA check is in NTFS. What if we move the filesystem to another machine?
● SMB server could be a Samba server, or even a python script.

Attacker can modify a DLL server-side, bypassing sharing restrictions.
● DLLs are incorrectly assumed to be immutable.
● False File Immutability

Can Attacker Exploit Paging?
Even if attacker successfully exploits false file immutability to inject code into a
PE, won’t page hashes catch this attack?

Authenticode Page Hashes

Kernel Drivers ✅ ✅
Protected Processes ✅ ✅
Protected Process Light (PPL) ✅ ❌

Admin->PPL Exploit: PPLFault
Disclosed by me at Black Hat Asia 2023.

https://github.com/gabriellandau/PPLFault
https://www.youtube.com/watch?v=5xteW8Tm410
https://i.blackhat.com/Asia-23/AS-23-Landau-PPLdump-Is-Dead-Long-Live-PPLdump.pdf

https://github.com/gabriellandau/PPLFault
https://www.youtube.com/watch?v=5xteW8Tm410
https://i.blackhat.com/Asia-23/AS-23-Landau-PPLdump-Is-Dead-Long-Live-PPLdump.pdf

Mitigating PPLFault
In February 2024, Microsoft added a check to mitigate PPLFault.

MM sets a flag requiring dynamic page hashes for images that originate from remote
devices such as network redirectors like SMB.

https://www.elastic.co/security-labs/inside-microsofts-plan-to-kill-pplfault

https://www.elastic.co/security-labs/inside-microsofts-plan-to-kill-pplfault

PPLFault - Takeaways
What did we learn?

PPLFault successfully exploited bad assumptions in CI about DLL immutability,
achieving unsigned WinTcb-Light PPL code execution. For reasons out-of-scope, it was
easy to chain this to full physical memory read/write, compromising the entire OS in a
few seconds.

The mitigation was narrow in scope - targeting images loaded from remote devices.

Can we exploit false file immutability in other ways?

Let’s look beyond executable image sections.

What about attacks against data files?

Chapter 4 - New Research

Authenticode - Security Catalogs
Security catalogs - detached Authenticode signatures.

Signed array of Authentihashes in .cat files in C:\Windows\System32\CatRoot

Every PE with Authentihash in list is considered to be signed by that signer.

Hash Hash Hash Hash Hash Hash Hash Hash SignatureHash Hash Hash HashHash

Authenticode - Security Catalogs
Large list of catalogs. CI loads them into kernel pool for fast lookup.

Code Integrity - Catalog Parsing

Lorem ipsum dolor sit
amet, consectetur
adipiscing elit. Duis sit
amet odio vel purus
bibendum luctus. Morbi
iaculis dapibus
tristique. In hac
habitasse platea
dictumst. Mauris
convallis quam at.
Morbi iaculis dapibus
tristique.

Parse CatalogMap File Into Memory

nt!ZwOpenFile(
 GENERIC_READ,
 FILE_SHARE_READ)

nt!ZwCreateSection(
 SEC_COMMIT)

nt!ZwMapViewOfSection

Validate Signature

CI!MinCrypK_
 VerifySignedDataKModeEx

CI!I_MapFileHashes

Catalog Parsing - Key Insights
ZwOpenFile(GENERIC_READ, FILE_SHARE_READ)
● Denies write sharing to prevent catalog modifications during processing.
● Bad assumption - false file immutability.

ZwCreateSection(SEC_COMMIT)
● Creates a data section.
● Not an image section - no page hashes.

Can we perform a PPLFault-style attack on security catalogs?

Exploiting Security Catalogs

Attacker
(UserMode)

Storage
(SMB)

Kernel &
Code Integrity

Request Unsigned Driver Load

Request Catalog

Signed Catalog

Purge Working Set

Request Page

Unsigned Driver Authentihash

Validate Signature ✔

Parse

Map Catalog

Load Unsigned Driver

Install Catalog

Exploit - Toggling the Catalog
Hash Hash Hash Hash Hash Hash Hash Hash Signature

Hash Hash Hash Hash Hash Hash Hash Hash Signature

Hash Hash Hash Hash Hash Hash Hash Hash Signature

Hash Hash Hash Hash Hash Hash Hash Hash Signature

Hash Hash Hash Hash Hash Hash Hash Hash Signature

Hash Hash Hash Hash Hash Hash Hash Hash Signature

PPLFault used an oplock to
deterministically pause the
victim process then switch to
the payload DLL contents.

No good opportunities here
for oplocks.

Rapidly toggle the catalog
between benign and malicious
- probabilistic approach.

Choose hash near end of
catalog because parsing is
[probably] linear.

Exploit - Race Condition
Attacker needs CI to trigger a page fault between validation and parsing, but the page
is already resident from recent validation. Without a page fault, CI will use the
same pages for validation and parsing.

To evict page from kernel memory, attacker must empty working set between
MinCrypK_VerifySignedDataKModeEx and I_MapFileHashes.

Very short race window. Employ multiple approaches to slow CI and improve chances of
winning race:
● Choose large security catalog (4MB).
● Dedicated thread emptying working set.
● Dedicated thread repeatedly loading unsigned driver.
● High-priority dummy threads spinning CPU cores to starve system worker threads.

Fail - Signature Check Failed
If the payload Authentihash is read during the signature check, the catalog will be
rejected.

Hash Hash Hash Hash Hash Hash Hash Hash SignatureValidate Signature ❌

Fail - Benign Catalog Parsed

Validate Signature ✔

Parse Catalog ❌

An even number of swaps (including zero) between signature validation and parsing
means CI will parse the benign hash and reject our driver.

Hash Hash Hash Hash Hash Hash Hash Hash Signature

Hash Hash Hash Hash Hash Hash Hash Hash Signature

Hash Hash Hash Hash Hash Hash Hash Hash Signature

Context Switch 😴

Win - Payload Catalog Parsed

Hash Hash Hash Hash Hash Hash Hash Hash Signature

Hash Hash Hash Hash Hash Hash Hash Hash Signature

Hash Hash Hash Hash Hash Hash Hash Hash SignatureParse Catalog 😈

Validate Signature ❌

Validate Signature ✔

CI must validate a benign catalog then parse a malicious one.

Exploit Demo!
Windows 11 23H2 22631.3447 (April 2024)

Chapter 4 - Avoiding Pitfalls
To avoid this type of bug, we first need to understand it better.

Imagine a shared memory mapping for an IPC mechanism. Double Read is a TOCTOU where
victim reads a value from attacker-controlled shared memory twice.

Attacker changes memory between the reads, resulting in a unexpected victim behavior.

Example:
● Attacker initially specifies a small length field.

○ pPacket->length = 16;
● Victim code allocates a small buffer to hold data.

○ pBuffer = malloc(pPacket->length);
● Attacker changes to large length value.

○ pPacket->length = 32;
● Victim code uses new length, copying too much data and overflowing buffer.

○ memcpy(pBuffer, pPacket->data, pPacket->length); 💥

Windows kernel (and drivers) often operate directly on user mode memory.
● Significant consideration for METHOD_DIRECT IOCTL handlers.

Double Read

Recent example: https://exploits.forsale/24h2-nt-exploit/

struct IPC_PACKET
{
 SIZE_T length;
 UCHAR data[];
};

https://exploits.forsale/24h2-nt-exploit/

Call To Action
Devs must treat attacker-writable files as subject to double-read vulnerabilities.

Denying write sharing does not necessarily prevent modification.

Affected Operations
What types of operations are affected by False File Immutability?

Operation API Mitigations

Image Sections CreateProcess
LoadLibrary

1. Enable Page Hashes.

Data Sections MapViewOfFile 1. Avoid double reads.
2. Copy the file to a heap buffer before processing.
3. Prevent paging via MmProbeAndLockPages/VirtualLock.

Regular I/O ReadFile 1. Avoid double reads.
2. Copy the file to a heap buffer before processing.

What Else Could Be Vulnerable?

Note: ZwReadFile may be used for more than just files. Only uses on files (or those which could be coerced into operating on files) could be vulnerable.

What Else Could Be Vulnerable?

Note: ZwReadFile may be used for more than just files. Only uses on files (or those which could be coerced into operating on files) could be vulnerable.

Any user-mode application that calls ReadFile, MapViewOfFile, or LoadLibrary on an
attacker-controllable file, denying write sharing for immutability, may be vulnerable.

Hypothetical examples:
● MapViewOfFile

○ Auto-elevate installers that apply downloaded patches if correctly signed
● ReadFile

○ Memory corruption in file parsers by changing double-read values
■ AV engines
■ Search indexers

● LoadLibrary
○ RPC server relying on SetProcessMitigationPolicy(ProcessSignaturePolicy) to

prevent DLL injection via impersonation system drive remapping attacks.

Don’t Forget About User Mode

https://bugs.chromium.org/p/project-zero/issues/detail?id=2451

https://bugs.chromium.org/p/project-zero/issues/detail?id=2451

Chapter 5 - Mitigating the Exploit
MSRC won’t service Admin -> Kernel vulnerabilities by default.
● “service” means “fix via security update.”

As a third-party AV dev, I can’t fix CI.dll. How can I protect my customers?

What can Microsoft do to fix it?

https://www.microsoft.com/en-us/msrc/windows-security-servicing-criteria

https://www.microsoft.com/en-us/msrc/windows-security-servicing-criteria

To mitigate ItsNotASecurityBoundary, I wrote FineButWeCanStillEasilyStopIt.sys

Filesystem Minifilter. In Pre IRP_MJ_ACQUIRE_FOR_SECTION_SYNCHRONIZATION callback
invoked during ZwCreateSection, if:

● SyncType == SyncTypeCreateSection &&
● PageProtection == PAGE_READONLY &&
● FlagOn(TargetFileObject->DeviceObject->Characteristics, FILE_REMOTE_DEVICE) &&
● Data->RequestorMode == KernelMode &&
● FltGetRequestorProcess(Data) == PsInitialSystemProcess &&
● IsCalledByCodeIntegrity() && // Check caller via RtlWalkFrameChain
● Contains catalog magic bytes and Certificate Trust List PKCS #7 OID.

then deny the operation.

Messy, right? It’s likely imperfect too. Compare that to a three-line fix in CI.

Third-Party Mitigation

DSE Exploit Mitigation #1

Lorem ipsum dolor sit
amet, consectetur
adipiscing elit. Duis sit
amet odio vel purus
bibendum luctus. Morbi
iaculis dapibus
tristique. In hac
habitasse platea
dictumst. Mauris
convallis quam at.
Morbi iaculis dapibus
tristique.

Parse CatalogMap File Into Memory

nt!ZwOpenFile(
 GENERIC_READ,
 FILE_SHARE_READ)

nt!ZwCreateSection(
 SEC_COMMIT)

nt!ZwMapViewOfSection

nt!ExAllocatePool2

nt!RtlCopyMemory

Validate Signature

CI!MinCrypK_
 VerifySignedDataKModeEx

CI!I_MapFileHashes

Copy the file to a heap buffer before processing.

DSE Exploit Mitigation #2

Lorem ipsum dolor sit
amet, consectetur
adipiscing elit. Duis sit
amet odio vel purus
bibendum luctus. Morbi
iaculis dapibus
tristique. In hac
habitasse platea
dictumst. Mauris
convallis quam at.
Morbi iaculis dapibus
tristique.

Parse CatalogMap/Lock File Into Memory

nt!ZwOpenFile(
 GENERIC_READ,
 FILE_SHARE_READ)

nt!ZwCreateSection(
 SEC_COMMIT)

nt!ZwMapViewOfSection

nt!IoAllocateMdl

nt!MmProbeAndLockPages

Validate Signature

CI!MinCrypK_
 VerifySignedDataKModeEx

CI!I_MapFileHashes

Lock pages into RAM to block working set eviction.

Mitigating the Exploit - HVCI
If HVCI is enabled, CI.dll doesn’t do catalog parsing.
● CI sends the catalog contents to the Secure Kernel (SK)
● SK runs in a separate virtual machine.
● SK puts catalog contents in its own secure allocation.
● Signature validation and parsing are done from this secure allocation.
● Attack is mitigated because file changes have no effect on the secure allocation.

https://learn.microsoft.com/en-us/windows/win32/procthread/isolated-user-mode--ium--processes

https://learn.microsoft.com/en-us/windows/win32/procthread/isolated-user-mode--ium--processes

● 2024-02-14 Reported ItsNotASecurityBoundary and FineButWeCanStillEasilyStopIt to
MSRC as VULN-119340, suggesting ExAllocatePool and MmProbeAndLockPages as fixes.

● 2024-02-29 Windows Defender team reached out to coordinate disclosure.
● 2024-04-23 Microsoft releases KB5036980 preview with MmProbeAndLockPages fix.
● 2024-05-14 Fix reaches GA for desktop releases.

Disclosure Timeline

https://support.microsoft.com/en-us/topic/april-23-2024-kb5036980-os-builds-22621-3527-and-22631-3527-preview-5a0d6c49-e42e-4eb4-8541-33a7139281ed

https://support.microsoft.com/en-us/topic/april-23-2024-kb5036980-os-builds-22621-3527-and-22631-3527-preview-5a0d6c49-e42e-4eb4-8541-33a7139281ed

I_MapAndSizeDataFile is the legacy vulnerable code.

Inside The Mitigation

https://www.youtube.com/watch?v=ha-uagjJQ9k

https://www.youtube.com/watch?v=ha-uagjJQ9k

CipMapAndSizeDataFileWithMDL contains the fix.

Inside The Mitigation

https://www.youtube.com/watch?v=ha-uagjJQ9k

https://www.youtube.com/watch?v=ha-uagjJQ9k

Bug class: False File Immutability

PPLFault: Admin -> PPL [-> Kernel via GodFault]
● Exploits bad immutability assumptions about image section in CI/MM
● Reported September 2022
● Patched February 2024

ItsNotASecurityBoundary: Admin -> Kernel
● Exploits bad immutability assumptions about data sections in CI
● Reported February 2024
● Patched May 2024

More exploits: TBA 😀

Summary

https://x.com/GabrielLandau/status/1757818200127946922

https://x.com/GabrielLandau/status/1757818200127946922

Exploit PoC to be released in late June. Announcement on Twitter.

Thanks to the Windows Defender team for collaborating on disclosure and fixes!

Gabriel Landau at Elastic Security

Twitter/ : @GabrielLandau

Conclusion

