Smoke and Mirrors:
Driver Signatures are Optional

Gabriel Landau
FElastic Security

BlueHat IL

whoami

Low-level Windows [reverse] engineer
Help build Elastic Endpoint Security
Detecting malware tradecraft
Attack & defense of EDR
Presented research at:

Shmoocon

Black Hat USA

Black Hat Asia

Blue, formerly red

BlueHat IL

Chapter 1 - Windows File Sharing

More than you’ve ever wanted to know about sharing violations.

........ \\\\,

@ napster X

The Pirate Lay

BlueHat IL

Opening Files - Access Rights

CreateFile - Win32 API to open or create files.
¢ ntdll analog is NtCreateFile.
® Kernel driver analog is ZwCreateFile.

Specify desired access rights:
e FILE READ DATA

FILE WRITE DATA

DELETE

HANDLE CreateFilel(

[in] LPCWSTR 1pFileName,

[in] DWORD dwDesiredAccess,

[in] DWORD dwShareMode,

[in, optional] LPSECURITY_ATTRIBUTES 1lpSecurityAttributes,
[in] DWORD dwCreationDisposition,
[in] DWORD dwFlagsAndAttributes,
[in, optional] HANDLE hTemplateFile

s

BlueHat IL

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://learn.microsoft.com/en-us/windows/win32/fileio/file-security-and-access-rights

Opening Files - Share Mode

FILE SHARE READ / FILE SHARE WRITE / FILE SHARE DELETE

4

“I'm okay with others reading/writing/deleting this file while I'm using it.’

As file is opened:
® DesiredAccess is tested against ShareMode of all existing file handles
® ShareMode is tested against GrantedAccess of all existing file handles

HANDLE CreateFilel(

[in] LPCWSTR 1pFileName,

[in] DWORD dwDesiredAccess,

[in] DWORD dwShareMode,

[in, optional] LPSECURITY_ATTRIBUTES 1lpSecurityAttributes,
[in] DWORD dwCreationDisposition,
[in] DWORD dwFlagsAndAttributes,
[in, optional] HANDLE hTemplateFile

s

BlueHat IL

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://learn.microsoft.com/en-us/windows/win32/fileio/creating-and-opening-files

Opening Files - Sharing Violation
DesiredAccess/ShareMode incompatibilities fail the CreateFile call.

e ERROR SHARING VIOLATION / STATUS SHARING VIOLATION

First call to CreateFile Valid second calls to CreateFile

GENERIC_READ, FILE SHARE_READ e GENERIC_READ, FILE SHARE_READ
e GENERIC_READ, FILE_ SHARE_READ FILE_SHARE_WRITE

GENERIC_READ, FILE SHARE_WRITE e GENERIC_WRITE, FILE_ SHARE_READ
e GENERIC_WRITE, FILE_SHARE_READ FILE_SHARE_WRITE

GENERIC_READ, FILE_ SHARE_READ FILE_ SHARE_WRITE

e GENERIC_READ, FILE SHARE_READ

e GENERIC_READ, FILE SHARE_READ, FILE_ SHARE_WRITE

e GENERIC_WRITE, FILE_ SHARE_READ

e GENERIC_WRITE, FILE_SHARE_READ, FILE SHARE_WRITE

e GENERIC_READ GENERIC_WRITE, FILE SHARE_READ

e GENERIC_READ GENERIC_WRITE, FILE_ SHARE_READ,
FILE_ SHARE_WRITE

GENERIC_WRITE, FILE SHARE_READ e GENERIC_READ, FILE_ SHARE_WRITE
e GENERIC_READ, FILE SHARE_READ, FILE_ SHARE WRITE

BlueHat IL

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://learn.microsoft.com/en-us/windows/win32/fileio/creating-and-opening-files

Opening Files - Exclusive Access

Set ShareMode=0 for exclusive access to files until you close the handle.

An application also uses CreateFile to specify whether it wants to share the
file for reading, writing, both, or neither. This is known as the sharing mode.
An open file that is not shared (dwShareMode set to zero) cannot be opened
again, either by the application that opened it or by another application,

until its handle has been closed. This is also referred to as exclusive access.

BlueHat IL

https://learn.microsoft.com/en-us/windows/win32/fileio/creating-and-opening-files

Sharing Enforcement - I/O Manager

Filesystems call IoCheckLinkShareAccess to see whether DesiredAccess/ShareMode is
compatible with existing handles.

NTSTATUS NtfsCheckShareAccess (FileObject, DesiredAccess, ShareAccess)

{
ntStatus = IoCheckLinkShareAccess (

FileObject, DesiredAccess, ShareAccess);
if (!NT_SUCCESS (ntStatus))

{

return ntStatus;

} NTSTATUS IoChecklLinkShareAccess(

[in] ACCESS_MASK DesiredAccess,

} [in] ULONG DesiredShareAccess,
[in, out, optional] PFILE OBJECT FileObject,
[in, out, optional] PSHARE_ACCESS ShareAccess,
[in, out, optional] PLINK SHARE ACCESS LinkShareAccess,
[in] ULONG IoShareAccessFlags

);

BlueHat IL

https://github.com/Microsoft/Windows-driver-samples/blob/622212c3fff587f23f6490a9da939fb85968f651/filesys/fastfat/create.c#L6822-L6884

Sharing Enforcement - File Mapping

File mappings (section objects) allow files to be readable/writable after handles

are closed.

ZwOpenFile

ZwCreateSection

ZwMapViewOfSection Memory Mapped View

NTSTATUS NtfsOpenAttributeCheck(...)

{
if ('FlagOn(ShareMode, FILE SHARE WRITE) &&

MmDoesFileHaveUserWritableReferences (FileObject->SectionObjectPointer))

{
return STATUS SHARING VIOLATION;

BlueHat IL

https://github.com/Microsoft/Windows-driver-samples/blob/622212c3fff587f23f6490a9da939fb85968f651/filesys/fastfat/create.c#L6858-L6870

Sharing Enforcement - Executables

Files mapped as executable images (EXEs/DLLs/etc) must be immutable while in use.

In other words, ZwMapViewOfSection (SEC IMAGE) implies no-write-sharing.

NTSTATUS NtfsOpenAttributeCheck(...)
{
// Block writes to active image section objects
if (FlagOn(DesiredAccess, FILE WRITE DATA) &&
FileObject->SectionObjectPointer.ImageSectionObject &&
'MmFlushImageSection (FileObject->SectionObjectPointer), MmFlushForWrite)

{
return STATUS SHARING VIOLATION

BlueHat IL

https://github.com/Microsoft/Windows-driver-samples/blob/622212c3fff587f23f6490a9da939fb85968f651/filesys/fastfat/create.c#L3572-L3593

Chapter 2 - Code Integrity

How do you trust the code that’s running on your system?

Open File - Security Warning

Do you want to run this file?

| . Name: ...sers\Gabriellandau\Downlocads\VisualStudicSetup.exe
Publisher: Microsoft Corporation
Type: Application

From: C\Users\GabrielLlandau\Downloads\VisualStudioSetup...

Run Cancel

Always ask before opening this file

While files from the Internet can be useful, this file type can potentially
harm your computer. Only run software from publishers you trust.

What's the risk?

BlueHat IL

Authenticode

Microsoft specification to digitally

8 ntoskrnl.exe Properties

ecurity Details

Digttal Signatures

Previous Versions

General File Hashes

Signature list

Name of signer: Digest algorithm

Microsoft Windows sha256

Timestamp
Friday, April 5, 2024 1...

Cancel

sign Portable Executable

(PE) files.

Digital Signature Details

General Advanced

-, Digital Signature Information

'~

Signer information

Name:
E-mail:

Signing time:

Countersignatures

Name of signer:

Microsoft Time-S...

This digital signature is OK.

Microsoft Windows
Not available

Friday, April 5, 2024 1:42:03 AM

E-mail address: Timestamp

Not available Friday, April 5, 2024 ...

BlueHat IL

Authenticode Signing

Authentihash algorithm computes hash over most
(but not all) of the PE file.

Authentihash is signed using PKCS #7 and appended
to PE as Security Directory (aka Certificate
Table) .

Typical Windows PE
File Format

MS-DOS 2.0 Section
PE File Header
Optional Header

Windows-Specific Fields

Checksum

Data Directories

Certificate Table

Section Table (Headers)

Section 1

Section 2

Section N

Attribute Certificate Table

bCertificate binary array
(contains Authenticode
signature)

Remaining content

Objects with gray background are omitted

from the Authenticode hash value

Bold the Authenticode-related data.

Objects in bold describe the location of

Authenticode Signature Format

PKCS#7

contentinfo

Set to SPCIndirectDataContent, and
contains:

e PE file hash value

e Legacy structures

certificates

Includes:

e X.509 certificates for software
publisher’s signature

e X.509 certificates for timestamp
signature (optional)

Signerinfos
Signerinfo

Includes:

« Signed hash of contentinfo

e Publisher description and URL
(optional)

e Timestamp (optional)

Timestamp (optional)

A PKCS#9 counter-signature,
stored as an unauthenticated
attribute, which includes:
e Hash value of the Signerinfos
signature
UTC timestamp creation time
Timestamping authority
signature

BlueHat IL

https://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/authenticode_pe.docx
https://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/authenticode_pe.docx

Authenticode Implementations

User and kernel implementations to validate signatures.
The user implementation is out of scope for this talk.
The kernel implementation 1s the Code Integrity (CI) subsystem.

CI.dll protected from tampering by Secure Boot and Trusted Boot systems.

BlueHat IL

Code Integrity

Kernel Mode Code Integrity (KMCI)
® Validates signatures on drivers before allowing them to load.
@ FEnforces Driver Signing Enforcement and Vulnerable Driver Blocklist.

User Mode Code Integrity (UMCI)

¢ CI validates the signatures of EXEs and DLLs before allowing them to load.
Enforces Protected Processes and Protected Process Light signature requirements.
Enforces Microsoft Signer process mitigation SetProcessMitigationPolicy).
Enforces /INTEGRITYCHECK for FIPS 140-2 modules.

Exposed to consumers as Smart App Control.

Exposed to businesses as App Control for Business (formerly WDAC) .

KMCI and UMCI implement different policies for different scenarios.

BlueHat IL

https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/select-types-of-rules-to-create
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/select-types-of-rules-to-create
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setprocessmitigationpolicy
https://x.com/GabrielLandau/status/1668353640833114131
https://learn.microsoft.com/en-us/windows/apps/develop/smart-app-control/overview
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/wdac
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/microsoft-recommended-driver-block-rules
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/microsoft-recommended-driver-block-rules

Chapter 3 - Incorrect Assumptions

Let’s discuss a class of vulnerabilities resulting from incorrect assumptions.

BlueHat IL

Incorrect Assumptions

Microsoft docs imply that files successfully opened without write sharing can’t be
modified under vyou.

FILE_SHARE_WRITE Enables subsequent open operations on a file or
0x00000002 device to request write access.
Otherwise, other processes cannot open the file or
device if they request write access.

If this flag is not specified, but the file or device has
been opened for write access or has a file mapping
with write access, the function fails.

What 1if the filesystem doesn’t know that the file’s been modified?

BlueHat IL

Executable Image Section Paging

Executable image sections originate from PE files.

MM can page these out if memory is needed:
® Never modified? Discard it. We already have a copy in the original PE.
® Modified? Save it to the pagefile.

O Example: ntdll was detoured. MM copy-on-write created private copy.

Upon page fault:
® Never modified*? Read the page from the original PE file.
® Modified? Grab the private copy from the pagefile.

* Exception: The memory manager may treat PE-relocated pages as unmodified, dynamically reapplying relocations during page faults.

BlueHat IL

Page Hashes

Optional list of hashes of each 4KB page of PE. Allows MM to validate hashes of
individual pages during page faults.

Static page hashes
@ Stored within signature when file is signed.

e signtool.exe /ph

/ph If supported, generates page hashes for executable files.

Dynamic page hashes
® Computed on the fly by CI when SEC_IMAGE is created and validated.
® Fnables page hash enforcement even i1if signature does not include them.

Page hashes are not free - they use CPU and slow down page faults.

BlueHat IL

https://learn.microsoft.com/en-us/windows/win32/seccrypto/signtool

Attacking Code Integrity

Scenario:
1. Orphanage administrator enables macros in email attachment containing ransomware.

2 Ransomware employs UAC bypass to instantly elevate to Admin.
3. Ransomware fails to terminate AV running as Protected Process Light (PPL).
4 Ransomware author wants PPL rights so it can kill AV and ransom orphanage.

Can it launch itself directly as PPL?
)X UMCI prevents improperly-signed EXEs and DLLs from loading into PPL.

CreateFile (FILE WRITE DATA) to inject code into already-in-use DLL?
)X NTFS checks prevent CreateFile (FILE WRITE DATA) to in-use image sections.
0 Aforementioned MmFlushImageSection check.

FILE WRITE DATA check is in NTFS. What if we move the filesystem to another machine?
® SMB server could be a Samba server, or even a python script.

Attacker can modify a DLL server-side, bypassing sharing restrictions.

®¢ DLLs are incorrectly assumed to be immutable.
e False File Immutability

BlueHat IL

Can Attacker Exploit Paging?

Even 1f attacker successfully exploits false file immutability to inject code into a
PE, won’t page hashes catch this attack?

Authenticode Page Hashes
Kernel Drivers . .
Protected Processes . .
Protected Process Light (PPL) v X

BlueHat IL

Admin->PPL Exploit: PPLFault

Disclosed by me at Black Hat Asia 2023.

WinTcb-Light Kernel &
Process Code Integrity

Request DLL Load

Validate Signature v
Map DLL into Process

Execute DLL
Page Fault

Page Payload into Process

Request File Contents

Signed File Contents

Request Page from File

Payload

Storage

BlueHat IL

https://github.com/gabriellandau/PPLFault
https://www.youtube.com/watch?v=5xteW8Tm410
https://i.blackhat.com/Asia-23/AS-23-Landau-PPLdump-Is-Dead-Long-Live-PPLdump.pdf

Mitigating PPLFault

In February 2024, Microsoft added a check to mitigate PPLFault.

MM sets a flag requiring dynamic page hashes for images that originate from remote

devices such as network redirectors like SMB.

->u.LlongFlags & 9x3808)
€ & @x40000000) != @)

SomeGlobal = 115;
return @xCeorB433i64;

| ex1e000000;

->DeviceObject->Characteristics & FILE_RE
' | ex40; // Set a flag to

\ ags + 2;
o5 = | exleceeeo;
if ((*((BYTE *)&Co lArea->ul.Flags + 2) & @xC) != 4)

00cDZBEOfMiValidateSectionCreatellll (75EBEOD)

BlueHat IL

https://www.elastic.co/security-labs/inside-microsofts-plan-to-kill-pplfault

PPLFault - Takeaways

What did we learn?

PPLFault successfully exploited bad assumptions in CI about DLL immutability,
achieving unsigned WinTcb-Light PPL code execution. For reasons out-of-scope, it was

easy to chain this to full physical memory read/write, compromising the entire OS in a
few seconds.

The mitigation was narrow in scope - targeting images loaded from remote devices.

BlueHat IL

Chapter 4 - New Research

Can we exploit false file immutability in other ways?
Let’s look beyond executable image sections.

What about attacks against data files?

BlueHat IL

Authenticode - Security Catalogs

Security catalogs - detached Authenticode signatures.
Signed array of Authentihashes in .cat files inC:\Windows\System32\CatRoot

Every PE with Authentihash in list is considered to be signed by that signer.

(Bash Hash Hash Hash Hash Hash Hash Hash Hash Hash Hash Hash Hash Signature

Security Catalog Security Catalog

General Security Catalog General Security Catalog

=) Security Catalog Information Catalog entries:

—* This security catalog is valid.
Tag

FD631AF053472DCD57268C 28D 59AAB363FSEBGED 18249BEG4FB4...
FE1ACF27B85E08450889823C9A 17C5AD 1378FD2F687534DCS0EB. ..
FF1E74939 1AAF615E519A99EABE64BOE37CAOBB4780EB825B8443. .. |,
1.3.6.1.4.1.311.12.1.1 ot %
- |List identifier c8c5ffc186b53b48ba g7
= |Effective date Thursday, March 7, 2024 11:58:26 AV
t algorithm 1.3.6.1.4.1.311,12.1.3 Field Value
e 0400 4 3
; 1dl i;i ? ig 23 Wi Di g; = DI Thumbprint algorithm sha256
81¢ e 160050006 630...
ke s ol Thumbprint fd 63 1a 0 53 47 2d cd 57 26 8c 28 ...

> wowA4 mirrnsoft-windows-msftedit. ..

Entry details

View Signature

BlueHat IL

Authenticode - Security Catalogs

Large list of catalogs. CI loads them into kernel pool for fast lookup.

B T ? + | {F750E6C3-38EE-11D1-85E5-00C04FC295EE} At O %
F! | H.ome Share View A 2
H |S| |V F%
* E i V. Cut l “E =18 l Mg New item ~ E Open B Select all ;
Copy path - il Easy access ~ B Edit =R Select none
Pin to Quick Copy Paste _ Move Copy Delete Rename New Properties , -)
access [l Paste shortcut to to - folder - rg History gm Invert selection
Clipboard Organize New Open Select (
€« -5 v A . « System32 » CatRoot » {F750E6C3-38EE-11D1-85E5-00C04FC295EE} v O P
Name Date modified Type
& Microsoft-Windows-Client-Desktop-Required-WOW64-Package0011~31bf3856ad364e35~amd64~~10.0.19041.4046.cat 2/2/2024 T:47 AM Security Catalog
- Microsoft-Windows-Client-Desktop-Required-WOW®64-Package0011~31bf3856ad364e35~amdé4~~10.0.19041.4170.cat 3/7/2024 3:01 PM Security Catalog
2 Microsoft-Windows-Hello-Face-Package~31bf3856ad364e35~amd6é4~~10.0.19041.3636.cat 11/9/2023 6:45 AM Security Catalog
- Microsoft-Windows-NetFx4-US-OC-Package~31bf3856ad364e35~amdé4~~10.0.19041.3636.cat 11/9/2023 6:45 AM Security Catalog
& Microsoft-Windows-Client-Desktop-Required-WOW&64-Package0010~31bf3856ad364e35~amdé4 ~~10.0.19041.4170.cat 3/7/2024 3:00 PM Security Catalog
£ Microsoft-Windows-Client-Desktop-Required-WOW64-Package0010~31bf3856ad364e35~amd64~~10.0.19041.4046.cat 2/2/2024 7:48 AM Security Catalog
. |
1,956 items | E =2

BlueHat IL

Code Integrity - Catalog Parsing

Map File Into Memory Validate Signature
nt!zZwOpenFile (CI!MinCrypK CI!I MapFileHashes
GENERIC READ, VerifySignedDataKModeEx

FILE SHARE READ)

nt!ZwCreateSection (
SEC_COMMIT)

nt!ZwMapViewOfSection

BlueHat IL

Catalog Parsing - Key Insights

ZWOpenFile(GENERIC_READ, FILE_SHARE_READ)
® Denies write sharing to prevent catalog modifications during processing.
® Bad assumption - false file immutability.

ZwCreateSection (SEC_COMMIT)
® (Creates a data section.

®¢ Not an image section - no page hashes.

Can we perform a PPLFault-style attack on security catalogs?

BlueHat IL

Exploiting Security Catalogs

Attacker Kernel &
(UserMode) Code Integrity

Request Catalog I

Signed Catalog

Load Unsigned Drlver

o e

BlueHat IL

Exploit - Toggling the Catalog

PPLFault used an oplock to

victim process then switch to
the payload DLL contents.

No good opportunities here ------- Signature

for oplocks.

Rapidly toggle the catalog -------- Signature

between benign and malicious
- probabilistic approach.

Choose hash near end of ------ - Signature

catalog because parsing 1is
[probably] linear.

‘Bash Hash Hash Hash Hash Hash Hash Hash Signature

{Bash [Hash |Hash | Hash [Hash [Hash| | [[Hash signature

BlueHat IL

Exploit - Race Condition

Attacker needs CI to trigger a page fault between validation and parsing, but the page
is already resident from recent validation. Without a page fault, CI will use the
same pages for validation and parsing.

To evict page from kernel memory, attacker must empty working set between
MinCrypK VerifySignedDataKModeEx and I_MapFileHashes.

Very short race window. Employ multiple approaches to slow CI and improve chances of
winning race:

® Choose large security catalog (4MB).

® Dedicated thread emptying working set.

® Dedicated thread repeatedly loading unsigned driver.

®¢ High-priority dummy threads spinning CPU cores to starve system worker threads.

BlueHat IL

Fail - Signature Check Failed

If the payload Authentihash is read during the signature check, the catalog will be
rejected.

BlueHat IL

Fail - Benign Catalog Parsed

An even number of swaps (including zero) between signature validation and parsing
means CI will parse the benign hash and reject our driver.

validaze signacure v NN sivace

BlueHat IL

Win - Payload Catalog Parsed

CI must validate a benign catalog then parse a malicious one.

Validate Signature X ------ - Signature

Validate Signature ¢ -------- Signature

BlueHat IL

Exploit Demo!

Windows 11 23H2 22631.3447 (April 2024)

BlueHat IL

Chapter 4 - Avoiding Pitfalls

To avoid this type of bug, we first need to understand it better.

BlueHat IL

Double Read

Imagine a shared memory mapping for an IPC mechanism. Double Read is a TOCTOU where
victim reads a value from attacker-controlled shared memory twice.

Attacker changes memory between the reads, resulting in a unexpected victim behavior.

Example: struct IPC_PACKET
e Attacker initially specifies a small length field. {
o pPacket->length = 16; SIZE T length;
@ Victim code allocates a small buffer to hold data. UCHAR datal[];
0 pBuffer = malloc (pPacket->length) ; };

® Attacker changes to large length value.
o pPacket->length = 32;

® Victim code uses new length, copying too much data and overflowing buffer.
o memcpy (pBuffer, pPacket->data, pPacket->length); ¥

Windows kernel (and drivers) often operate directly on user mode memory.
¢ Significant consideration for METHOD DIRECT IOCTL handlers.

Recent example:

BlueHat IL

https://exploits.forsale/24h2-nt-exploit/

Call To Action

Devs must treat attacker-writable files as subject to double-read vulnerabilities.

Denying write sharing does not necessarily prevent modification.

BlueHat IL

Affected Operations

What types of operations are affected byFalse File Immutability?

Operation API Mitigations
Image Sections |CreateProcess |1. Enable Page Hashes.
LoadLibrary

Data Sections |MapViewOfFile 1. Avoid double reads.
2. Copy the file to a heap buffer before processing.
3. Prevent paging via MmProbeAndLockPages/VirtualLock.

Regular I/0 ReadFile 1. Avoid double reads.
2. Copy the file to a heap buffer before processing.

BlueHat IL

What Else Could Be Vulnerable*®
52] xrefs to ZwMapViewOfSection 53] xrefs to ZwReadFile O X
Direction Type Address Text Directic Type Address Text

: ES Up o i,pdata:00000001400F 1878 i RUNTIME_FUNCTION <rva ZwReadFile, rv

% Up e .pdata.OOOOOOO 1400F1A10 RUNTIME_FUNCTION <r-va n ESp. p CMFSystemThreadRoutine +242 call ZwReadFile
Down p ApiSetploadSchemalmage +12D call ZwMapViewOfSection BSo. p CMFSystemThreadRoutine +51E call ZwReadFile
ES Down »p AslpFileLargeMapCreate +118 call ZwMapViewOfSection B uw p CmpDoFileRead+82 ol ZwReadeie
B pown p AslpFileLargeMapCreate +1C7 call ZwMapViewOfSection Eip. p DifZwReadFileWrapper +12F call ZwReadFile
B pown p CMFReadCompressedSegment+128 call ZwMapViewOfSection E5p. p EmInitSystem+37848 call ZwReadFile
E= pown p CMFSystemThreadRoutine +4C3 call ZwMapViewOfSection ESpo. p EtwpFinalizeHeader +109 call ZwReadFile
ES up p CmSiMapViewOfSection +4F cal ZwMapViewOfSection Eio. o EtwpFinalizeHeader +1DB call ZwReadFile
ES pown p CmpSetSystemBiosInformation +AF call ZwMapViewOfSection % D.. p Et“'pRea:’?meRESt°rEB“ffer+108 Ca:: ZWReadF!:e
ES pown p CmpSetVideoBiosInformation+128 call ZwMapViewOfSection = g"' ﬁ Emﬁ:ﬁ:gi:g:g;ﬁgﬁf E:" i:‘\:i:gi:lz
% Down p C.mpSetVIdgoBlosInfo.rma:Jon+9F call ZwMap\f,ewOfSect:.on BEo. o EtwpUpdateFileHeader +1D4 cal ZwReadFie
Down p D|f2wMapV|e».vOfSechon\ Vrapper+138 call ZwMapV!ewOfSech'on ESo. p RtiCheckBootStatusIntegrity +63 call ZwReadFile
ES bown p EmpMapPhysicalAddress+D9 call ZwMapViewOfSection Eo. p RiCheckBootStatusIntegrity +F7 call ZwReadFile
ES Down p ExpQueryCodelntegrityCertificateInfo+198B call ZwMapViewOfSection Eiup »p RilInitializeBootStatDataCache +5D call ZwReadFile
B pown p ExpQueryElamCertinfo+183 cal ZwMapViewOfSection Eiuwp p RilInitializeBootStatDataCache +D6 call ZwReadFile
E Down p TopIsNotNativeDriverImage +158 call ZwMapViewOfSection ESp. p RilInitializeBootStatusDataBlackBox +79 cal ZwReadFile
B Down p PilnitializeDDB+17C call ZwMapViewOfSection EHo. p RtlpGetSetBootStatusData+199465 call ZwReadFile
E Up D RtlFileMapMapView +12D call ZwMapViewOfSection E D.. p RilpGetSetBootStatusData+76 call ZwReadFile
D.. p SecureDump_LoadCertAndProvisionKey+1C2 call ZwReadFile

Line 1 of 17 Line 1 of 20

OK Cancel Search Help OK Cancel Search Help
Note: ZwReadFile may be used for more than just files. Only uses on files (or those which could be coerced into operating on files) could be vulnerable.

BlueHat IL

What Else Could Be Vulnerable?

Administrator: Command Prompt Administrator: Command Prompt
C:\Windows\System32\drivers>grep -R ZwReadFile C:\Windows\System32\drivers>grep -R ZwMapViewOfSection
Binary file appid.sys matches 3 Binary file ahcache.sys matches
Binary file bfs.sys matches Binary file bxvbda.sys matches
Binary file cht4vx64.sys matches Binary file cht4sx64.sys matches
Binary file cimfs.sys matches Binary file dxgkrnl.sys matches
Binary file ClipSp.sys matches Binary file evbd@a.sys matches
Binary file crashdmp.sys matches Binary file rmcast.sys matches
Binary file dxgkrnl.sys matches [Binary file SgrmAgent.sys matches
Binary file fvevol.sys matches [Binary file vhdmp.sys matches
Binary file mlx4 bus.sys matches Binary file Vid.sys matches
Binary file mountmgr.sys matches Binary file volsnap.sys matches
Binary file mrxsmb.sys matches [Binary file werkernel.sys matches
Binary file mssecflt.sys matches
Binary file ndis.sys matches 'Ef\Hindows\SystemBZ\drivers>_
Binary file netbt.sys matches —

Binary file PEAuth.sys matches
Binary file rspndr.sys matches

Binary file srv2.sys matches
Binary file vhdmp.sys matches
Binary file videoprt.sys matches
Binary file vmrawdsk.sys matches
Binary file volsnap.sys matches
Binary file xboxgip.sys matches

C:\Windows\System32\drivers>_

Note: ZwReadFile may be used for more than just files. Only uses on files (or those which could be coerced into operating on files) could be vulnerable.

BlueHat IL

Don’ £t Forget About User Mode

Any user-mode application that calls ReadFile, MapViewOfFile, or LoadLibrary on an
attacker-controllable file, denying write sharing for immutability, may be vulnerable.

Hypothetical examples:
e MapViewOfFile
O Auto-elevate installers that apply downloaded patches if correctly signed
e ReadFile
O Memory corruption in file parsers by changing double-read values
m AV engines
m Search indexers
e LoadLibrary
0 RPC server relying on SetProcessMitigationPolicy (ProcessSignaturePolicy) to
prevent DLL injection via impersonation system drive remapping attacks.

BlueHat IL

https://bugs.chromium.org/p/project-zero/issues/detail?id=2451

Chapter 5 - Mitigating the Exploit

MSRC won’t service Admin -> Kernel vulnerabilities by default.
® ‘“service” means “fix via security update.”

As a third-party AV dev, I can’t fix CI.dll. How can I protect my customers?

What can Microsoft do to fix 1t?

BlueHat IL

https://www.microsoft.com/en-us/msrc/windows-security-servicing-criteria

Third-Party Mitigation
To mitigate ItsNotASecurityBoundary, I wrote FineButWeCanStillEasilyStopIt.sys

Filesystem Minifilter. In Pre IRP MJ ACQUIRE FOR SECTION_ SYNCHRONIZATION callback
invoked during ZwCreateSection, if:

e SyncType == SyncTypeCreateSection &é&

e PageProtection == PAGE READONLY &é&

¢ FlagOn(TargetFileObject->DeviceObject->Characteristics, FILE REMOTE DEVICE) &&
e Data->RequestorMode == KernelMode &é&

® FltGetRequestorProcess (Data) == PsInitialSystemProcess &é&

e IsCalledByCodeIntegrity() && // Check caller via RtlWalkFrameChain

® Contains catalog magic bytes and Certificate Trust List PKCS #7 OID.

then deny the operation.

Messy, right? It’s likely imperfect too. Compare that to a three-line fix in CI.

BlueHat IL

DSE Exploit Mitigation #1

Map File Into Memory Validate Signature
nt!zZwOpenFile (CI!MinCrypK CI!I MapFileHashes
GENERIC READ, VerifySignedDataKModeEx

FILE SHARE READ)

nt!ZwCreateSection (
SEC COMMIT)

nt!ZwMapViewOfSection

nt!ExAllocatePool2 \
Copy the file to a heap buffer before processing.

nt!RtlCopyMemory <&

BlueHat IL

DSE Exploit Mitigation #2

Map/Lock File Into Memory Validate Signature

nt!zZwOpenFile (CI!MinCrypK CI!I MapFileHashes
GENERIC READ, VerifySignedDataKModeEx
FILE SHARE READ)

nt!ZwCreateSection (
SEC COMMIT)

nt!ZwMapViewOfSection

nt!IoAllocateMdl
‘>Lock pages into RAM to block working set eviction.
nt!MmProbeAndLockPages

BlueHat IL

Mitigating the Exploit - HVCI

If HVCI is enabled, CI.dll doesn’t do catalog parsing.

@ C(CI sends the catalog contents to the Secure Kernel (SK)
®¢ SK runs in a separate virtual machine.

® SK puts catalog contents in its own secure allocation.

® Signature validation and parsing are done from this secure allocation.

e Attack is mitigated because file changes have no effect on the secure allocation.

VSM Normal Mode (VTLO)

VSM Secure Mode (VTL1)

Isolated User Mode (IUM)
User Mode
(Ring 3)

User Mode
(Ring 3)

:(:rne(l);v'lode s 5 - . Cernel Date Kernel Mode
n .
. Secure Kernel (Ring 0)

Hyper-V Hypervisor

Hardware

BlueHat IL

https://learn.microsoft.com/en-us/windows/win32/procthread/isolated-user-mode--ium--processes

Disclosure Timeline

® 2024-02-14 Reported ItsNotASecurityBoundary and FineButWeCanStillEasilyStopIt to
MSRC as VULN-119340, suggesting ExAllocatePool and MmProbeAndLockPages as fixes.

® 2024-02-29 Windows Defender team reached out to coordinate disclosure.

® 2024-04-23 Microsoft releases KB5036980 preview withMmProbeAndLockPages fix.

® 2024-05-14 Fix reaches GA for desktop releases.

BlueHat IL

https://support.microsoft.com/en-us/topic/april-23-2024-kb5036980-os-builds-22621-3527-and-22631-3527-preview-5a0d6c49-e42e-4eb4-8541-33a7139281ed

Inside The Mitigation

I MapAndSizeDataFile is the legacy vulnerable code.

igh ‘
CHJ)AUJLINUSTEI)

v1@ = ZwCreateSection(&SectionHandle, SECTION MAP_READ,
if (vle >=0)
{
vlo = ZwMapViewOfSection(
SectionHandle,
(HA’JDLC)p\x::::::::::::::::__,
BaseAddress,
eLL,
oLL,
2__,

&viewSize,
ViewShare,
2,
ViewUnmap);
if ((v1e >= 0)
1
vl2 = FileHandle;
goto LABEL 16;
1
}

1
J
04CC04 I HapAndSlveDataFlle 83 (1C004DCo4)

00

BlueHat IL

https://www.youtube.com/watch?v=ha-uagjJQ9k

Inside The Mitigation

CipMapAndSizeDataFileWithMDL contains the fix.

ection(&SectionHandle, SECTION_MAP_READ,

) vl3 = ZwMapViewOfSection(
SectionHandle,
! (HANDLE)@xFFFFFFFFFFFFFFFFic4,
vl2,
@i64,
Pic4,
Pie4,
&ViewSize,
ViewShare,
a,
2u);
if (vl3 >=0)

r
1

f (a10)

e e

if (ViewSize > OxFFFFEFFF)
1
vl3 = -1873741760;
goto LABEL_16;
¥
Mdl = IoAllocateMdl(*v12, ViewSize, 0, @, 0i64);
vl5 = Mdl;
if (!mdl)
:
1
vl3 = -1873741670;
goto LABEL_16;

MmProbeAndLockPages(Mdl, @, IoReadAccess);

¥

goto LABEL_15;
1
J
1

J

0004E138 CipMapAndSizeDataFileWithMDL:57 (1CO004F138)

BlueHat IL

https://www.youtube.com/watch?v=ha-uagjJQ9k

Summary

Bug class: False File Immutability

PPLFault: Admin -> PPL [-> Kernel via GodFault]
® FExploits bad immutability assumptions about image section in CI/MM

® Reported September 2022
® Patched February 2024

ITtsNotASecurityBoundary: Admin -> Kernel
® FExploits bad immutability assumptions about data sections in CI

® Reported February 2024
® Patched May 2024

More exploits: TBA e

BlueHat IL

https://x.com/GabrielLandau/status/1757818200127946922

Conclusion

Exploit PoC to be released 1n late June. Announcement on Twitter.
Thanks to the Windows Defender team for collaborating on disclosure and fixes!
Gabriel Landau at Elastic Security

Twitter/ X: @Gabriellandau

@ elastic security labs

BlueHat IL

